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Abstract
The dynamics of a particle moving in background electromagnetic and
gravitational fields is revisited from a Lie group cohomological perspective.
Physical constants characterizing the particle appear as central extension
parameters of a group which is obtained from a centrally extended kinematical
group (Poincaré or Galilei) by making some subgroup local. The corresponding
dynamics is generated by a vector field inside the kernel of a pre-symplectic
form which is derived from the canonical left-invariant 1-form on the extended
group. A non-relativistic limit is derived from the geodesic motion via an
Inönü–Wigner contraction. A deeper analysis of the cohomological structure
reveals the possibility of a new force associated with a non-trivial mixing of
gravity and electromagnetism leading to, in principle, testable predictions.

PACS numbers: 45.50.−j, 02.20.Sv, 02.40.Hw

1. General setting

The aim of this work is to clarify the underlying algebraic structure behind the dynamics of
a particle moving inside a background field. We shall see how the constants characterizing
the properties of the particle and its couplings can be understood in terms of the parameters
associated with the central extensions of certain groups, thus bringing into scene group-
cohomological concepts.

In order to motivate the role of central extensions, let us first recall some basic and
well-known facts with the help of an example representing, perhaps, the simplest physical
system one can imagine: the free particle with Galilei symmetry. In order to define the system

0305-4470/02/450627+07$30.00 © 2002 IOP Publishing Ltd Printed in the UK L627

http://stacks.iop.org/ja/35/L627


L628 Letter to the Editor

we make use of the Poincaré–Cartan form defined on what we shall call evolution space
constructed from phase space by adding time, (x, p, t),

�PC = p dx − p2

2m
dt . (1)

A realization of Galilei group, parametrized by (b, a, V ) (we omit rotations) and the
corresponding infinitesimal transformations (generators), on this evolution space is the
following:

x ′ = x + a + V t Xa = ∂

∂x

t ′ = t + b Xb = ∂

∂t

p′ = p + mV XV = m
∂

∂p
+ t

∂

∂x
.

(2)

When checking the invariance of the Poincaré–Cartan form under the Galilei group we
realize that its variation under the action of boosts is a total differential, rather than zero.
In infinitesimal terms, the Lie derivative

LXV
�PC = d(mx) �= 0 (3)

thus leading to the idea of semi-invariance. Of course, this is not a problem at the classical
level, since the equations of motion are not sensitive to such a total derivative variation.
Although it is not necessary in a strict manner, let us raise to the level of a postulate the claim
for strict invariance and let us see what consequences we can derive from this assumption.

In order to achieve such strict invariance, let us extend the evolution space with a new
variable η = eiφ which transforms under the Galilei group in such a way that the variation
of the total differential of φ inside a modified 1-form, � ≡ �PC + dφ, cancels out the term
d(mx). That is

dφ′ = dφ − d(mx). (4)

The corresponding finite action of the Galilei group on this new variable is then (a new group
parameter ϕ must be included for the following expression to be a proper action)

η′ = η e−i[ 1
2 mV 2t+mV x+ϕ] (5)

which together with the action on the rest of the variables in the extended evolution space (2),
allows us to compute the infinitesimal generators as well as their commutation relations:

[X̃b, X̃a] = 0 [X̃b, X̃V ] = X̃a [X̃a, X̃V ] = mX̃ϕ. (6)

We note the presence of a central term in the last commutator, and, therefore, the claim for
strict invariance has led us to the centrally extended Galilei group.

The crucial fact about this phenomenon leading to the central extension is that it is not
related to a particular realization of the group, but it is a consequence of its intrinsic algebraic
structure, in fact related to group-cohomologial features. This suggests considering the group
itself (a centrally extended group, in fact) as the starting point in the definition of the dynamics
of a physical system.

This is exactly the aim of the so-called group approach to quantization (GAQ) (see [1]
and references therein), which tries to derive a dynamics directly from the strict symmetry of
the corresponding physical system where the group-cohomology plays a central role. Even
though the main stress of the approach leans on its quantum aspects, it also has non-trivial
implications at the classical level, which are the aspects we are going to emphasize here.
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The extended evolution space and the Poincaré–Cartan form are generalized by objects that
can be completely recovered from the centrally extended symmetry group. The latter has the
structure of a principal fibre bundle G̃ whose base is the non-extended group G and where the
fibre is the U(1) group of phase invariance of quantum mechanics. The relevant cohomology
in the construction is that of G. The object generalizing the Poincaré–Cartan form is the
component of the left-invariant canonical 1-form on the group which is dual to the vertical
(or central) vector field: � = θL(ζ )

. By its own construction, this � generalizing �PC + dφ

(which we will call quantization 1-form) is invariant under the left action of the extended
group (meanwhile �PC is semi-invariant under G̃/U(1)). Regarding classical dynamics, the
form d� can be seen as a pre-symplectic form, in such a way that the solution space (i.e. the
phase space) is obtained from the group by getting rid of those variables inside the kernel
of d�. In this way, the trajectories of the vector fields inside this kernel can be seen as
generalized equations of motion [2]. In principle, there is a certain ambiguity in the choice of
the Hamiltonian vector field, but this problem will not arise in the system we shall consider
here.

Let us illustrate this technique revisiting the free Galilean particle under this perspective.
For instance, from the realization of the group on the evolution phase (2) and (5), we can
derive the following group law for the centrally extended Galilei group:

b′′ = b′ + b a′′ = a′ + a + V ′b
V ′′ = V ′ + V ζ ′′ = ζ ′ζ e−i m

h̄
[V ′a+ 1

2 bV ′2].
(7)

We can use it to compute the right- and left-invariant vector fields (from now on, we shall
write x for a, t for b, v for V, ϕ for φ and therefore ζ for η, whenever the discussion takes
place in the GAQ setting, and set h̄ = 1)

X̃L
t = ∂

∂t
+ v

∂

∂x
− 1

2
mv2 ∂

∂ϕ
X̃R

t = ∂

∂t

X̃L
x = ∂

∂x
− mv

∂

∂ϕ
X̃R

x = ∂

∂x

X̃L
v = ∂

∂v
X̃R

v = ∂

∂v
+ t

∂

∂x
− mx

∂

∂ϕ

X̃L
ϕ = ∂

∂ϕ
X̃R

ϕ = ∂

∂ϕ

(8)

and the quantization 1-form

� ≡ θLϕ = mv dx − 1
2mv2 dt + dϕ (9)

where the first two terms on the rhs correspond to the original Poincaré–Cartan form.

2. Interactions

2.1. Electromagnetism

Up to now we have sketched two alternative ways of considering the role of the symmetry
group when dealing with the dynamics of a physical system. The first one makes use of a
particular realization of the group on an extended phase space, while the second one (that of
GAQ) emphasizes the singular role of the group, considering it as the departing point in the
analysis. At this point we switch to interactions, starting with the electromagnetic force, and
study the situation from the perspective of both technical strategies.
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A natural question arising when considering the centrally extended Galilei group refers
to the consequences of making the U(1) part of the symmetry local4. Dwelling on the setting
of the first approach [4], the Lie algebra with a local U(1) is composed of the former Galilei
generators realized on the extended evolution space, together with the tensor product of local
functions and the central term: f (x, t)⊗Xφ . But when we check the invariance of the modified
Poincaré–Cartan form (�PC + dφ) under the new generators, semi-invariance reappears:

Lf ⊗Xφ
� = df. (10)

We follow here the same strategy as before, i.e. we look for new variables extending the
evolution space whose variation under the symmetry group compensates the variation df in a
newly modified 1-form �. Fortunately, in this case there are natural guesses and we are able
to find new variables A0, Ax , transforming in the desired way (A′ = A − df ).

The realization of the fields in the newly extended phase space (x, p, t, φ,A0, Ax) is

X̃b = ∂

∂t

X̃a = ∂

∂x

X̃v = t
∂

∂x
+ m

∂

∂p
− mx

∂

∂φ
+ Ax

∂

∂A0

f ⊗̃Xφ = −f
∂

∂φ
− ∂f

∂x

∂

∂Ax

+
∂f

∂t

∂

∂A0
.

(11)

The new strictly invariant 1-form is

� = p dx − p2

2m
dt − Ax dx + A0 dt + dφ (12)

from which the Lorentz force felt by the particle can be straightforwardly derived.
As an alternative approach, we apply the techniques of GAQ to this problem, which

results in a more algorithmic and general treatment. In fact, if we consider an arbitrary
group G̃ whose infinitesimal generators are {Xα} (α = 1, . . . , n) and an invariant subgroup
{Xi} (i = 1, . . . ,m < n), we can make the latter local, obtaining an algebra spanned by
{f ⊗ Xi,Xα} and whose new commutators are

[Xα, f ⊗ Xi] = f ⊗ [Xα,Xi] + LXα
f ⊗ Xi = f ⊗ C

j

αiXj + LXα
f ⊗ Xi. (13)

One then applies GAQ tools to obtain the quantization 1-form �.
In the case of the particle inside the electromagnetic field, we are dealing with the Galilei

group extended by U(1)(�x, t), that is, ϕ = ϕ(�x, t). This algebra is infinite-dimensional but,
for analytical functions f , we can resort to the following economical short cut. We start by
adding to Galilei algebra only those generators f ⊗ X̃ϕ for which f are linear functions, i.e.
t ⊗ X̃ϕ and xi ⊗ X̃ϕ , to be referred to as X̃A0 and X̃Ai , respectively. Let us call G̃E the
group associated with this finite-dimensional algebra. The commutation relations of G̃E are
(omitting zero commutators as well as rotations, which operate in the standard way)

[X̃vi , X̃t ] = X̃xi [X̃xi , X̃vj ] = −mδijX̃ϕ

[X̃t , X̃A0 ] = −qX̃ϕ [X̃xi , X̃Aj ] = qδij X̃ϕ

[X̃vi , X̃Ai ] = δij X̃A0

(14)

4 Intuition is led by the fact that a local U(1) group is intrinsically related to electromagnetism by means of a minimal
coupling principle [3].
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where we have performed a new central extension, which is allowed by the Jacobi identity and
parametrized by q. This parameter will eventually be identified (see below) with the electric
charge of the particle.

Fortunately, G̃E encodes all the dynamical information in the local group. The only
effect of including all functions f is that of making local the group parameters A0 and Ai

(corresponding to X̃A0 and X̃Ai , respectively), something we shall recover here exactly by
imposing an appropriate constraint. After the exponentiation of the group, we compute the
quantization 1-form which turns out to be

� = m�v · d�x + q �A · d�x − (
1
2m�v2 + qA0

)
dt + dϕ (15)

which is again the Poincaré–Cartan of a particle inside an electromagnetic field plus the central
term dϕ. In order to derive the equations of motion of the particle we have to impose the
above-mentioned constraint, making the functions Aµ (Ai and A0) to depend on the position
of the particle: A = A(xparticle). The vector field X in the kernel of �, that is, satisfying
iX d� = 0 is

X = ∂

∂t
+ �v · ∂

∂ �x − q

m

[(
∂Ai

∂xj
− ∂Aj

∂xi

)
vj +

∂A0

∂xi
+

∂Ai

∂t

]
∂

∂vi

(16)

and its trajectories are governed by the following equations:

d�x
dt

= �v m
d�v
dt

= q

[
�v ∧ ( �∇ ∧ �A) − �∇A0 − ∂ �A

∂t

]
(17)

which result in the standard expression for the Lorentz force, when we define �∇ ∧ �A ≡ �B and
− �∇A0 − ∂ �A

∂t
≡ �E. We have studied this electromagnetic example in the Galilean scheme for

pedagogical reasons, but we must stress that everything can be reproduced in the relativistic
case, starting from the Poincaré group and constructing the corresponding P̃E , finally leading
to the same final expression.

2.2. Electromagnetism and gravity mixing

We now address a more involved system using for its analysis the most algorithmic of the two
techniques we have presented up to now: GAQ.

We start directly with the centrally extended Poincaré group and try to make the spacetime
translation subgroup local, instead of the central U(1) one. These local translations can be
seen as local diffeomorphisms, thus suggesting the emergence of gravity notions [5]. The Lie
algebra can be written as

[X̃t , X̃vi ] = X̃x [X̃xi , X̃vj ] = −δij (X̃t + mX̃ϕ). (18)

An interesting phenomenon is observed when we make the spacetime translations local. In
fact, when computing the commutators following the above-mentioned general rule, we find

[X̃vi , f ⊗ X̃xj ] = (Xvi f ) ⊗ X̃xj + δij (f ⊗ X̃t + f ⊗ X̃ϕ). (19)

This means that making the translation generators local in the extended Poincaré group implies
the appearance of a local U(1) symmetry. This fact is linked to the loss of invariant character of
the translation subgroup in the extended Poincaré group. As we saw in the previous subsection,
making the central term local leads to a coupling between the particle and an electromagnetic
force. Therefore, we find that introducing the gravitational field offers the quite interesting
possibility of an automatic coupling of the particle and an electromagnetic field and suggests
the possibility of a mixing between both interactions.
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In order to derive the corresponding dynamics we undertake exactly the same path as
we follow in the pure electromagnetism case. (Symmetrized) generators of local spacetime
translations associated with the linear functions, xµ ⊗ Pν + xν ⊗ Pµ, will be called Xhµν , and
close the finite-dimensional algebra P̃EG (⊃ P̃E) analogous to G̃E . The analogue of the vector
Aµ is now a symmetric tensor hµν , eventually interpreted as a metric. However, the central-
charge structure of this finite-dimensional electro-gravitational subgroup, P̃ EG, is richer than
that of P̃E or G̃E , entailing a more involved GAQ analysis which must be made, for the time
being at least, order by order. For the sake of clarity, we shall dwell here on a simplified
case corresponding to a non-relativistic limit, which still preserves the main features of the
discussion. This limit is achieved by means of an Inönü–Wigner contraction of P̃EG with
respect to the subalgebra spanned by X̃t , X̃Ai and the rotations. The contracted algebra shows
(omitting rotations)

[X̃t , X̃vi ] = Pi [X̃t , X̃h00 ] = −2mX̃ϕ

[X̃t , X̃h0i ] = X̃xi [X̃t , X̃A0 ] = qX̃ϕ

[X̃xi , X̃vj ] = −(m + κq)δij X̃ϕ [X̃xi , X̃Aj ] = −qδij X̃ϕ

[X̃xi , X̃h0j ] = mδij X̃ϕ [X̃vi , X̃h0j ] = −δij X̃h00 + κδij X̃A0

[X̃vi , X̃Aj ] = −δij X̃A0 [X̃h0i , X̃Aj ] = −δij X̃A0 .

(20)

The most significant characteristic of this algebra is the appearance of a new constant κ

associated with the already commented on mixing of electromagnetic and gravity forces (this
fact is apparent in the non-contracted algebra where commutators of the type [X̃hµν , X̃hαβ ] ∼
X̃Aρ are present). The appearance of this κ in the commutator between boosts and translations,
in fact, modifies the inertial mass by a term κq , something most relevant from the physical
point of view.

The next step requires the exponentiation of the algebra and the subsequent construction
of the quantization 1-form from which the equations of motion can be derived. The
exponentiation process is still complicated and we employ a consistent order-by-order
procedure which can be found in [6]. The following equations of motion correspond to
the first non-trivial terms approximating the complete equations:

d�x
dt

= �v

(m + κq)
d�v
dt

= q

[
�v ∧ ( �∇ ∧ �A) − �∇A0 − ∂ �A

∂t

]

− m

[
�v ∧ ( �∇ ∧ �h) − �∇h00 − ∂�h

∂t

]
+

m

4
∇(�h · �h)

− κq

2

[
�v ∧ ( �∇ ∧ �h) − 1

4
∇(�h · �h) − ∂�h

∂t

]
.

(21)

In the kinematical part (lhs), we explicitly note what was already foreseen at the Lie-algebra
level, i.e. the kinematical mass is corrected by a term proportional to κ and the charge of the
particle.

On the dynamical side, the first line is again the expression of the Lorentz force, while
the expression in the second line, known as gravito-electromagnetism [7], corresponds to the
geodesical motion in its first non-trivial perturbative expression (linearized gravity), which is
that obtained when working in the group law up to the third order in group variables as we
have done. The last line is proportional to the mixing parameter κ and shows the appearance
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of a new force of electromagnetic behaviour but of gravitational origin; a consequence of this
new possibility opened by the analysis of the underlying symmetry cohomology.

3. Conclusions

We have seen how physical constants characterizing the particle and its couplings arise from
the parameters associated with the cohomology of the symmetry underlying the physical
system. This was already well known for the mass m and it is explicitly shown here for the
electric charge q.

We have recovered in an algebraic setting two standard interactions, electromagnetism
and gravity, by making local some invariant subgroups in the kinematical symmetry of the
particle. This in fact constitutes a revision of the gauge principle in this framework. When
exploring the full possibilities that the Lie algebra permits, a new force parametrized by a
constant κ has also been found associated with a mixing of the standard previous interactions.
Nature could choose κ to be zero, but the presence of this new term is a possibility that the
Lie algebra definitely offers. A crucial observation of this mixing process is the relevance of
making the symmetry local (translations) after a central extension of the group has already
been performed. This endows the new interaction with a quantum flavour since such a central
extension is intrinsically tied to the quantum symmetry of the corresponding system [8].

A value of κ different from zero has, in principle, two direct testable consequences. Firstly,
it entails a 2κq mass difference between charged particles and anti-particles. An algebraic
treatment such as the present one is not primarily related to additional physical phenomena
such as radiative corrections, but it in turn offers a conceptual algebraic framework in the
case that these effects actually occur. In that case, the current experimental clearance in the
values of mass differences in pairs such as electron–positron represents an upper bound for
the constant κ , implying a very small value (around 10−8 me). Nevertheless, this tiny value
would have strong and fundamental implications, especially the violation of CPT symmetry.

Secondly, since κ modifies the inertial mass (lhs in (21)) but leaves untouched the
gravitational mass (on the rhs) it represents an explicit violation of the weak equivalence
principle, a result with far-reaching conceptual consequences.
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